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Abstract: Most pharmacologically active molecules contain one or more ionizing groups, and
it is well-known that knowledge of the ionization state of a drug, indicated by the pKa value, is
critical for understanding many properties important to the drug discovery and development
process. The ionization state of a compound directly influences such important pharmaceutical
characteristics as aqueous solubility, permeability, crystal structure, etc. Tremendous advances
have been made in the field of experimental determination of pKa, in terms of both quantity/
speed and quality/accuracy. However, there still remains a need for accurate in silico predictions
of pKa both to estimate this parameter for virtual compounds and to focus screening efforts of
real compounds. The computer program SPARC (SPARC Performs Automated Reasoning in
Chemistry) was used to predict the ionization state of a drug. This program has been developed
based on the solid physical chemistry of reactivity models and applied to successfully predict
numerous physical properties as well as chemical reactivity parameters. SPARC predicts both
macroscopic and microscopic pKa values strictly from molecular structure. In this paper, we
describe the details of the SPARC reactivity computational methods and its performance on
predicting the pKa values of known drugs as well as Pfizer internal discovery/development
compounds. A high correlation (r2 ) 0.92) between experimental and the SPARC calculated
pKa values was obtained with root-mean-square error (RMSE) of 0.78 log unit for a set of 123
compounds including many known drugs. For a set of 537 compounds from the Pfizer internal
dataset, correlation coefficient r2 ) 0.80 and RMSE ) 1.05 were obtained.

Keywords: pKa; in silico prediction; SPARC; macroscopic (microscopic) ionization constants; drugs;
tautomer model; prediction error

Introduction
Most drug molecules contain one or more sites that can

reversibly disassociate or associate a proton (a hydrogen ion)
to form a negatively charged anion or a positively charged

cation. The reversibility means that a compound is always
in an equilibrium state with some fraction protonated and
the rest deprotonated.1

The ionization state of a compound, indicated by the pKa

value, greatly influences many biopharmaceutical properties
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such as partition coefficient, aqueous solubility as a function
of pH, and pharmacokinetic properties, such as blood-brain
barrier (BBB) and permeability.2 In the preformulation area,
pKa is exploited for forming salts of compounds in order to
achieve desirable biopharmaceutical properties and solid-
state characteristics that may be lacking in the free form of
the compound.3 There are also a number of studies reporting
a correlation between pKa and various ADMET and biologi-
cal properties. One example is the apparent volume of
distribution, a parameter used to predict the half-life of a
drug in the body. Prediction of the volume of distribution in
humans could be achieved via the Oie-Tozer equation.4 This
model requires the fraction of drug unbound in tissue to be
determined. It has been shown5 that the fraction unbound in
tissue (fut) could be calculated using the fraction unbound in
plasma (fu), a value fairly easy to obtain, and physicochemical
parameters: lipophilicity (E log D) and degree of ionization
(fi):

where

The coefficient for the fraction ionized (fi(7.4)) is the largest
in the equation, thus underlining the significance of the state
and degree of ionization. An accurate pKa is needed to
calculate thefi(7.4).

The experimental methods used to measure pKa values
have been well established and used extensively in drug
discovery and development stages in the pharmaceutical
industry. A comprehensive list of publications about pKa

determinations can be found in the review article.6 However,
accurate in silico prediction methods are used in many cases
to estimate pKa of compounds for which one has no physical

sample, i.e., virtual compounds, and as an important guide
when setting out to measure pKa using experimental methods.

Since the theoretical prediction methods only need a
chemical structure, the advantage of the prediction methods
is in not requiring the physical samples of compounds. Also,
fast, in silico prediction of pKa for a large virtual combina-
torial library of compounds is especially useful to evaluate
compounds before synthesis.

A variety of prediction methods have been developed over
the years including linear free energy relation7 (LFER),
CoMFA,8 semiempirical,9 and ab initio quantum mechanical
calculations.10 The LFER methods have been very successful
and are based on a wealth of empirical data. While being
fast, errors can be encountered if the molecule in question
contains fragments not found in the training set. The LFER
methods are implemented in widely used commercial
programs.

More recently, many interesting and novel methods have
also been developed by various groups: molecular tree
structured fingerprints and PLS,11 the COSMO-RS method,
a combination of the quantum chemical dielectric continuum
solvation model COSMO with a statistical thermodynamics
treatment for more realistic solvation (RS) simulations,12 a
method based on semiempirical and information-based
descriptors,13 and an approach using group philicity.14

The current status and recent progress in computational
approaches to pKa prediction in terms of the accuracy limits
are discussed in a recent review article.15

The computer program SPARC16 (SPARC Performs
Automated Reasoning in Chemistry) was developed to
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log fut ) 0.0080- 0.2294(E log D) - 0.9311fi(7.4)+
0.8885(logfu)

fut ) fraction of drug unbound in tissue

fu ) fraction of drug unbound in plasma

fi(7.4)) fraction of drug ionized at pH) 7.4
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predict numerous physical properties such as vapor pressure,
distribution coefficient, and GC retention time as well as
chemical reactivity parameters such as pKa and electron
affinity. SPARC predicts both macroscopic and microscopic
pKa values strictly from molecular structure using relatively
simple reactivity models.

In this paper, we describe the details of the SPARC
reactivity computational methods and its performance on
predicting the pKa values of various organic compounds
including many known drugs in comparison with experi-
mental values. Previously, SPARC was used to calculate the
pKa of 4338 IUPAC screened pKa measurements with the
RMSE of 0.38. In this paper the SPARC system is run
against a set of much more complicated and less well
screened data.

Experimental Section
Experimental pKa Measurements.The pKa values were

determined by capillary electrophoresis (CE), which is based
on observation of the effective mobility of an ionizable
compound in a series of electrolyte solutions of constant ionic
strength and different pH. The pKa values are obtained by
fitting the effective mobility as a function of pH to a suitable
model for the number of ionizable groups. Two very similar
but slightly different experimental protocols have been used
in two separate labs. The first protocol [protocol 1] is the
pressure-mediated capillary electrophoresis method using the
Combisep cePRO 9600, which has a 96 capillary array,
enabling it to perform 96 separations simultaneously. Buffers
are used in determining pKa values based on logP values.
For compounds with logP < 3, a set of 24 aqueous buffers
(pH range 1.8 to 11.2) are used. For compounds with logP
> 3, four sets of cosolvent buffers containing 30%, 40%,
50%, and 60% of methanol and ranging in pH from 2.1 to
10.8 are used. From the pKa measurements at the different
methanol concentrations, a plot of pKa vs methanol concen-
tration is created. The aqueous pKa (0% methanol) is obtained
by extrapolating the plot to zero methanol concentration. The
average standard deviation for the measurements from this
protocol is(0.1 pKa unit. The detailed methodology can be
found in ref 17. The second protocol [protocol 2] is using
Beckman P/ACE System MDQ with a set of 12 aqueous
buffers (pH range 2.0 to 11.5, see Table 2 in ref 6) are used.
The average standard deviation for the measurements from
this protocol is(0.2 pKa unit. A detailed description of the
method is illustrated in ref 6.

SPARC Computational Methods.The SPARC system
addresses the calculation of physicochemical properties

strictly from molecular structure. The query being addressed
will normally fall into one of two categories. The first
category is best described as a “whole molecule” problem,
where the whole molecule interacts with itself or other
molecules (solvents). Here the mechanistic interactions used
to calculate these properties involve dispersion, induction,
dipole, and hydrogen bonding interactions. This approach
is the one used for calculating vapor pressure, boiling point,
diffusion coefficient, electron affinity, activity coefficient,
solubility, Henry’s constant, and distribution coefficients in
SPARC’s physical properties calculator. The other category
of calculations involves “reaction at a center” where the
chemistry at a center is changed. These include ionization
pKa, hydrolysis, hydration, and tautomeric equilibria. The
combination of the two types of calculation can lead to more
exotic calculations such as gas-phase pKa, nonaqueous pKa,
and reduction potentials. Even more complex are reactions
that involve the coupling of several mechanisms such as
ionization pKa where there can be simultaneous tautomeric
and hydration equilibria involved in the reaction.

In this paper we will concentrate on ionization pKa and a
description of the SPARC reactivity computational methods
are presented. SPARC seeks to analyze chemical structure
relative to a specific reactivity query in much the same
manner as an expert chemist would do so. Molecular
structures are broken into functional units with known
chemical reactivity called reaction centers. The intrinsic
behavior of the reaction center then is “perturbed” for the
compound in question by describing mechanistically the
effects on the basic reactivity of molecular structure appended
to the reaction center using perturbation theory. SPARC
utilizes a classification scheme that defines the role of
structural constituents in effecting or modifying reactivity
of the center and quantifies the various “mechanistic”
descriptions commonly utilized in physical organic chemistry
such as resonance, field effects (both direct and indirect
(mesomeric)), sigma induction, intramolecular hydrogen
bonding, and steric effects as they pertain to resonance and
differential solvation of the reaction center.

A “toolbox” of mechanistic perturbation models has been
developed that can be implemented where needed for a
specific reactivity query. Resonance models were developed
and calibrated on light absorption spectra,18 whereas elec-
trostatic models (direct/indirect field and sigma induction
effects) were developed on ionization pKa.18,19 The SPARC
computational approach is based on blending well-known,
established methods such as SAR,20,21 LFER,22 and PMO
theory.23,24SPARC uses SAR for structure-activity analysis,

(16) Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A. A rigorous test
for SPARC’s chemical reactivity models: estimation of more than
4300 ionization pKas.Quant. Struct.-Act. Relat.1995, 14, 348-
355.

(17) Zhou, C.; Jin, Y.; Kenseth, J. R.; Stella, M.; Wehmeyer, K. R.;
Heineman, W. R. Rapid pKa estimation using vacuum-assisted
multiplexed capillary electrophoresis (VAMCE) with ultraviolet
detection.J. Pharm. Sci.2005, 94, 576-589.

(18) Karickhoff, S. W.; McDaniel, V. K.; Melton, C. M.; Vellino, A.
N.; Nute, D. E.; Carreira, L. A. Predicting chemical reactivity by
computer.EnViron. Toxicol. Chem.1991, 10, 1405.

(19) Hilal, S. H.; Carreira, L. A.; Melton, C. M.; Baughman, G. L.;
Karickhoff, S. W. Estimation of ionization constants of azo dyes
and related aromatic amines: environmental implication.J. Phys.
Org. Chem.1994, 7, 122-141.

(20) Lowry, T. H.; Richardson , K. S.Mechanism and Theory in
Organic Chemistry, 3rd ed.; Harper & Row: New York, 1987.
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LFER to estimate thermodynamic or thermal properties, and
PMO theory to describe quantum effects such as charge
distribution, delocalization energy, and polarizability of aπ
electron network.

Our approach to predict chemical reactivity involves the
location of primary reactive units within the molecule. These
reactive sites, which are termed reaction centers (C), are in
general the smallest subunits to which the reactivity of
interest can be ascribed. Any molecular structure appended
to C is viewed as a “perturber” (termed perturber structures,
P). For ionization pKa,

where i and f denote the initial and final states of the reaction
center, P is the perturber structure presumed to be unchanged
by the reaction, and pKa is the ionization equilibrium
constant. The pKa is expressed in terms of contributions of
the components P and C,

where (pKa)C is the ionization constant of the unperturbed
reaction center, andδP(pKa)C is the pKa perturbation brought
about by the perturber structure. All perturbations are to the
overall pKa reaction and are therefore all differential in
nature. E.g., the resonance perturbation is the differential of
the resonance stabilization of the initial and final states.

The pKa perturbation is factored into mechanistic com-
ponents,

where δres(pKa)C, δelec(pKa)C, δsolv(pKa)C, and δHB(pKa)C-S

describe the differential resonance, electrostatic, solvation,
and hydrogen bonding of P with the protonated and unpro-
tonated states of C, respectively. Electrostatic interactions
are derived from local dipoles or charges (monopoles) in P
interacting with charges or dipoles in C.δres describes the
change in the delocalization ofπ electrons of the two states
due to P. Hydrogen bonding and solvation effects are derived
from interactions of the structural elements of P that are
contiguous to C with the two states through hydrogen
bonding or steric blockage of solvent access to C, respec-
tively.

Currently, the SPARC is confined to elements H, B, C,
N, O, halogens, P, S, some As, and Se. Allenic groups are
not fully implemented.

SPARC’s Chemical Reactivity Models.The modeling
of the perturber effects for pKa relates to the reactivity center,
C. S denotes substituent groups that “instigate” this perturba-
tion. For electrostatic effects, S contains electric dipole and/
or monopole fields; for resonance, S donates or receives
electrons from the reaction center. R links the substituent,
S, and reaction center, C, and serves as a conductor of the
perturbation (for field the R acts as a spacer and modifies
the distance from S to C, for resonance R may be an
interveningπ network that can conduct electrons). A given
substituent, however, may be part of the structure, R,
connecting another substituent to C, and thus functions as a
conductor for the second substituent.

The modeling of the perturber effects for chemical
reactivity relates to the structural representation:

where S-iRj represents the perturber P appended to the
reaction center C. Thei and j represent anchor atoms in R
that connect to S and C, respectively. Perturbations are
factored into three independent components for the structural
components C, S, and R: (1) substituent strength, which
describes the potential of a particular S to “exert” a given
effect (e.g., for electrostatic interactions this would be the
magnitude of the dipole and/or monopole strength), (2)
molecular network conduction, which describes the “conduc-
tion” properties of the molecular structure R, connecting S
to C with regard to a given effect, and (3) reaction center
susceptibility, which rates the response of C to the effect in
question.

For each reaction center and substituent, SPARC catalogs
appropriate characteristic parameters. Substituents include
all non-carbon atoms and aliphatic carbon atoms contiguous
to either the reaction center or aπ unit. Some heteroatom
substituents containingπ groups are treated collectively as
substituents (e.g.,-NO2, -CtN, -C(dO)O, etc.). The only
requisites are that they be structurally and electronically well-
defined. Also, these units must be terminal with regard to
resonance interactions (no pass-through resonance).

The contributions of the structural components C, S, and
R are quantified independently. For example, the strength
of a substituent in creating an electrostatic field effect
depends only on the substituent regardless of the C, R, or
the reactivity property of interest. This allows substituent
strength to be tabulated and used in developing other models
such as hydrolysis and hydration. The goal of SPARC is to
develop this type of mechanistic toolbox using reactivities
such as pKa that are abundant and well-measured and then
use these tools in areas where there is a paucity of data.
Likewise, the molecular network conductor R is modeled
so as to be independent of the identities of S, C, or the
property being estimated. The susceptibility of a reaction
center to an electrostatic effect quantifies only the differential
interaction of the initial state versus the final state with the
electrical field. The susceptibility of the reaction center to
this perturbation gauges only the reaction Cinitial - Cfinal and

(21) Taft, R. W.Progress in Organic Chemistry; John Wiley & Sons:
New York, 1987; Vol. 6.

(22) Hammett, L. P.Physical Organic Chemistry, 2nd ed.; McGraw
Hill: New York, 1970.

(23) Dewar, M. J. S.; Dougherty, R. C.The PMO Theory of Organic
Chemistry; Plenum Press: New York, 1975.

(24) Dewar, M. J. S.The Molecular Orbital Theory of Organic
Chemistry; McGraw Hill: New York, 1969.

P-Ci 798
Ka

P-Cf

pKa ) (pKa)C + δP(pKa)C

δP(pKa)C ) δelec(pKa)C + δres(pKa)C + δsolv(pKa)C +
δHB(pKa)C-S

S-iRj-C
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is completely independent of both R and S.This factoring
and quantifying of each structural component independently
proVides parameter “portability” and, hence, permits model
portability to all structures and, in principle, to all types of
reactiVity. SPARC’s chemical reactivity models have been
designed and parametrized to be portable to any chemical
reactivity property and any chemical structure. For example,
chemical reactivity models are used to estimate macroscopic/
microscopic ionization pKa for both simple and complex
organic compounds,18,19,22 and the same reactivity models
have been used to calculate electron affinity,25 hydrolysis,26,27

and hydration.28

Electrostatic Effects Models. Electrostatic effects on
reactivity are derived from charges or electric dipoles in the
substituents (S) interacting through space (R) with charges
or dipoles in the reaction center (C). These effects include
direct electrostatic effects (field effect), indirect electrostatic
effects (mesomeric effect), and sigma induction effects.

Field Effect Model. The field effect of a given substituent
is given by a multipole expansion

whereqS is the charge on the substituent, approximated as a
point charge located at a point in S;µS is the substituent
dipole located at a point in S;δqC is the change in charge of
the reaction center accompanying the ionization reaction,
presumed to be located at point C; cosθCS gives the
orientation of the S dipole relative to C, ther’s are the
appropriate distances of separation, andDe is the effective
dielectric constant for the intervening molecular conduction
medium.

To facilitate model portability, each term in this equation
is resolved into contributions of the structural component S,
R, and C,

whereFelec is the susceptibility of a given reaction center to
electric field effects,F characterizes the magnitude of the
field component, charge or dipole, on the substituent (De is
subsumed into this number), andσR is the appropriate 1/rCS

or 1/rCS
2 term. An uncharged substituent has one field

strength parameter (Fı̀, dipole field strength), whereas a
charged substituent has two,Fq and Fi. Fi describes the

effective substituent dipole inclusive of the anchor atomi,
which is assumed to be a carbon atom. For cases involving
a non-carbon anchor atom,Fi is adjusted based on the
electronegativity of the anchor atom relative to carbon.Fi

incorporates the effective dielectric constant for the molecular
cavity and any unit conversion factors for charges, distances,
etc. Fq describes the effective S charged field strength.Fq

incorporates effective charge on S as well asDe and any
unit conversion factors.

For all reaction centers, electrostatic interactions are
calculated relative to a fixed geometric reference point, c,
which was chosen to approximate the center of charge for
the carboxylate anion,rCj ) 1.3, where the length unit is the
aromatic carbon-carbon length. TheFelec for the reaction
center reflects electric field changes for these reactions
gauged relative to the carboxylic acid reference, but also
subsumes any differences in charge distribution relative to
the reference point, c.

The distances between the reaction center and the sub-
stituent are estimated as a summation of the respective
distance contributions of C, R, and S as

rij is calculated by summation over delineated units on
the shortest molecular path fromi to j. All aliphatic bonds
contribute 1.1 units; double and triple bonds contribute 0.9
and 0.8 unit, respectively. For aromatic ring systems SPARC
uses templates for benzene, naphthalene, anthracene, and
phenanthrene that contain distances between each constituent
atom pair. For other polyaromatic hydrocarbons the system
creates the template on the fly to get the distances. The dipole
orientation factors, cosθCS, are ignored except in those cases
where S and C are attached to the same rigid Rπ unit. In
these situations, they are assumed to depend solely on the
point(s) of attachment, (i,j), and are precalculated and stored
in SPARC databases. Conventional bond angles are assumed
except for ortho configurations where substituent bond angles
are expanded slightly.

Mesomeric Field Effect.The mesomeric field effect was
first proposed to explain the very large perturbations on pKa

values of amino pyridines and guanidines.

The substituent, NH2 group (S) can “induce” electric fields
in the R (the aromatic ring) that can interact electrostatically
with C (the pyridine nitrogen). This indirect interaction is
called the “mesomeric field effect.” The amino group in this
structure should exert a positivedirect field effectand lower
the pKa. Here, however, the observed effect is exactly the
opposite of that predicted. The pKa of m-aminopyridine is
6.1, which is greater than the pKa of pyridine (5.2). In this
case, the NH2 induced negative charges are ortho and para
to the in-ring N. The loss of charge from the eminus N to

(25) Hilal, S. H.; Carreira, L. A.; Karickhoff, S. W.; Melton, C. M.
Estimation of electron affinity based on structure activity relation-
ships.Quant. Struct.-Act. Relat.1993, 12 (4), 389-396.

(26) Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Shrestha, B. P.
Estimation of carboxylic acid ester hydrolysis rate constants.QSAR
Comb. Sci.2003, 22 (9-10), 917-925.

(27) Whiteside, T. S.; Hilal, S. H.; Carreira, L. A. Estimation of
phosphate ester hydrolysis rate constants. I. Alkaline hydrolysis.
QSAR Comb. Sci.2006, 25 (2), 123-133.

(28) Hilal, S. H.; Bornander, L. L.; Carreira, L. A. Hydration
equilibrium constants of aldehydes, ketones and quinazolines.
QSAR Comb. Sci.2005, 24 (5), 631-637.

δfield(pKa)C )
δqCqS

rCSDe
+

δqCµS cosθCS

r2De

δ(pKa)field ) FelecσRFS

rCS ) rCj + rij + riS
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the ring induces a more positive charge on the N (S). The
positive induced N charge and the direct field effect lower
the pKa of the in-ring N whereas the negative charges raise
the pKa of the in-ring N. The proximity of the negative
charges ortho to the in-ring N leads to an overall increase in
pKa.

In SPARC, this mesomeric field effect is treated as a
collection of discrete charges,qR, with the contribution of
each described by the equation below. As was the case for
the direct field effects, it is desirable to resolve, and to
parametrize independently, the contributions of structural
units S, R and C,

whereMF gauges the ability or strength of a given S to induce
a field in Rπ. It describes theπ-induction ability of a
particular substituent relative to a surrogate CH2

-. qik is the
charge induced at atomk, with the reference probe attached
at atomi calculated using PMO theory.rkC is the through-
cavity distance to C as described in the direct field effect.
The magnitude of a givenMF parameter describes the relative
field strength, and the sign ofMF specifies the positive or
negative character of the induced charge in the Rπ.

Sigma Induction Model. Sigma induction derives from
electronegativity differences between the reaction center and
the substituent. This effect is transmitted progressively
through a chain ofσ-bonds among atoms. This is a short-
range interaction that is strong when the two atoms are
bonded to each other and any effect beyond the second atom
is negligible and ignored. Theσ contribution is expressed
as

whereFelec is the susceptibility of a given reaction center to
electric field effects anddøcs is the difference in the effective
electronegativity of C and S. The electronegativities of the
reaction centers and the substituents are estimated based on
the electronegativity of the methyl group that was chosen to
be the reference group.

Resonance Model.Resonance involves the delocalization
of π electrons into or out of the reaction center. Resonance
stabilization energy in SPARC is a differential quantity,
related directly to the extent of electron delocalization in the
initial state versus the final state of the reaction center. The
source or sink of electrons in P may be the substituents and/
or R-π units contiguous to the reaction center. Substituents
that withdraw electrons from a reference point (e.g.,-NO2,
-CdO, etc.) are designated S+, and those that donate
electrons (e.g.,-NR2, -OH, etc.) are designated S-. The
R-π units withdraw or donate electrons or may serve as
“conductors” ofπ-electrons between resonance units. Reac-
tion centers are likewise classified as C+ and C- denoting
withdrawing and donating of electrons, respectively. To
model this effect, the reaction center is replaced by a

surrogate electron donor (reference source), CH2
-. The

distribution of nonbonded molecular orbital (NBMO) charge
from this surrogate donor is used to quantify the acceptor
potential for the perturber structure P. The reactivity per-
turbation is given by

where (∆q)C is the fraction loss of NBMO charge from the
surrogate reaction center, and the susceptibility,Fres, of a
given reaction center to resonance quantifies the differential
“donor” ability of the two states of the reaction center relative
to the reference donor CH2-. In parametrization of resonance
effects, resonance strength,Er, is defined for all the substit-
uents (i.e., the ability to donate or receive electrons).
Resonance susceptibility is defined for all the reaction
centers. Resonance “conduction” in Rπ networks is modeled
so as to be portable to any array of Rπ units or to linking
any resonant source or sink groups.

Solvation Effects Model. Ci and Cf frequently differ
substantially in degree of solvation, with the more highly
charged moiety solvating more strongly. Thus, steric block-
age of the reaction center is distinguished from the steric-
induced twisting of the reaction center incorporated in
electron delocalization interactions. Differential solvation is
a significant effect in the protonation of organic bases (e.g.,
-NH2, in-ring N, dN) but is less important for acidic
compounds except for highly branched aliphatic alcohols.

In SPARC’s reactivity models, differential solvation of
the reaction center is incorporated in (pKa)C, Fres, andFelec.
If the reaction center is bonded directly to more than one
hydrophobic group or if the reaction center isortho or para
to hydrophobic substituent, thenδsol(pKa)C must be calcu-
lated. Theδsol(pKa)C contributions for each reaction center
bonded directly to more than one hydrophobic group are
quantified based on the sizes and the numbers of hydrophobic
groups attached to the reaction center and/or to the number
of the aromatic bridges that areapproximateto the reaction
center as

where Fsolv is the susceptibility of the reaction center to
differential solvation due to steric blockage of the solvent,
and ν are the solid angles occluded by the hydrophobic P
that is bonded directly (i), ortho (j), or perri (k) to the reaction
center.

Intramolecular Hydrogen-Bonding Effects Model. In-
tramolecular hydrogen bonding is a direct site coupling of a
proton-donating (R) site with a proton accepting (â) site
within the molecule. The reaction center might interact with
S through intramolecular hydrogen bonding and thus impact
the pKa. The Ci and Cf frequently differ substantially in
degree of hydrogen-bonding strength with a S. In aromatic,
π-ring or π-aliphatic (e.g., diguanide) systems, where the
reaction center is contiguous to the substituent and where a
stable 4-, 5-, or 6-member ring may be formed,δHB(pKa)C-S

must be estimated.δHB(pKa)C-S is a differential quantity that

δMF
(pKa)C ) FelecMF∑

k

qik

rkC

δsigma(pKa)C ) FelecdøCS

δres(pKa)C ) Fres(∆q)C

δsolv(pKa)C ) Fsolv(νi + νj + νk)
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describes the H-bonding differences of the Ci vs Cf with S
as

where the HBC is the differential H-bond strength for C-S
where C and S approximate to each other,Si is a reduction
factor for steric-induced twisting of C, andF is 1 or 0.6 for
aromatic andπ-ring systems, respectively. For C that might
H-bond with more than one substituent, the H-bonding
contribution for each S is calculated and the stronger
contributor is selected.

Temperature Dependence.For processes that can be
modeled in terms of some equilibrium (or pseudo equilibrium
component), the temperature dependence can be expressed
in the van’t Hoff representation,

where AC and BC are the entropic and the enthalpic van’t
Hoff coefficients for the reaction center andδH andδS are
enthalpic and entropic perturbations, respectively. To date,
all perturbations have been assumed to be predominantly
enthalpic andδS has been assumed to be zero. The van’t
Hoff factors (A andB) can be derived from temperature data
for the reaction center or inferred from simple structures with
minimal perturbational contributions.δH(∆pKa)C is a sum
of all the effects described above. When the enthalpic
perturbation cancels theB parameter as in thep-nitroaniline,
little or no temperature dependence is observed. Some
systems may have perturbations large enough to change the
sign of the slope of the pKa temperature dependence (e.g.,
the third pKa of phosphoric acid).

Calculating Macroscopic Ionization Constants. The
methods described above allow SPARC to calculate micro-
scopic pKa ionization constants. Microscopic pKa ionization
constants describe the equilibrium that exists between the
two species that are related by the loss of a proton. Molecules
that contain only one ionizable group need only this micro
constant to describe the state of ionization and the distribution
of the two species as a function of pH. The problem of
describing the state of ionization and the distribution of
species as a function of pH grows exponentially with the
number of ionizable sites. For a molecule that has N ionizable
sites, there are N macroscopic ionization constants which
can be measured. There are, however, 2N-1 × N microscopic
ionization constants and 2N microscopically different species
or states. For example, tyrosine contains 3 ionizable sites:
the carboxyl, aromatic hydroxyl, and ammonium groups.
Since each of the three groups may exist in either of two
states, tyrosine may exist in 8 (23) microscopically different
forms. The most positive of these 8 states is the cation, with
net chargeZ ) 1; the most negative is the divalent anion,
with Z ) -2. Each of the two intermediate states of net
chargeZ ) 0 andZ ) -1, respectively, may have three
microscopically different forms. Each of the ionizable groups
in tyrosine is characterized by four micro constants, since
the tendency of each group to accept or donate a proton

depends on the ionization state of the other two groups.
Hence, there are 12 (3× 22) microscopic ionization constants
connecting the 8 species. A microscopic ionization constant
governing the reaction AT B + H+ can be expressed asK
) [B][H +]/[A] and is a nonlinear constant. However, if the
pH is held constant thenP ) K/[H +] ) [B]/[A] is a linear
constant relating the initial and final species. At a given pH
all of the possible species are connected through a coupled
linear network. At a given pH (constant H+) the fraction of
any species that exists as a result of ionization can be
expressed asDij ...k/D whereD can be expressed as

and Lij ...k is the charge of the final state (ij ...k state). The
factorial is the number of different thermodynamic paths that
lead to theij ...k state, andDij ...k is one of terms in the
denominator (D). For example, the fraction of neutral species
would be 1/D and the fraction of a singly ionized species
would be ki × [H]Li/D. The macroscopic pKa values are
determined by generating the fraction of each species as a
function of pH. The curves of species having the same charge
are summed. The pH at crossing of the summed curves for
the species having a net chargen with the summed curves
for the species having net chargen + 1 represents a
macroscopic pKa.

Table 1 illustrates the detailed contribution from each term
using several examples.

Tautomer Equilibrium Constants. Tautomers are rapidly
converting isomers of a structure. Tautomerism is a chemical
process in which the double bonds in a molecule are
rearranged with synchronized hydrogen atom shift to form
an isomer. Tautomeric isomers play a very important role
in determining the physicochemical properties of a molecule.

Tautomerism is a two step process; first the molecule is
attacked by an acid or base for the gain or loss of a proton
respectively and a double bond rearrangement. The second
step is the loss or the gain of the proton from the first step.
Hence it is catalyzed by acid or base. This makes the process
dependent on the solvent properties.

To model the tautomeric equilibrium constant (KT), the
energy difference between the two isomeric structures, the
ketone form and the enol form, has to be modeled. SPARC
operates as a perturbation calculator to a reference structure;
hence, it cannot directly model the tautomeric equilibrium
constant. Rather SPARC uses an indirect thermodynamic
loop to calculateKT.

SPARC Tautomer Model. SPARC does not calculate
absolute energies of molecular structures. To calculate
tautomeric equilibrium constants, SPARC uses its micro-
scopic pKa and Henry’s constant models to calculateKT using

δHB(pKa)C-S ) HBCSiF

f(∆pKa) ) AC + δS(∆pKa)C + [BC + δH(∆pKa)C]/T

D )
1

0!
+

∑
i

ki[H]Li

1!
+

∑
i

∑
j*i

kikij[H]Lij

2!
+ ... +

∑
i

∑
j*i

‚‚‚ ∑
k*i,j ...

kikij...kij ...k[H]Lij ...k

N!
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a thermodynamic loop. This thermodynamic loop consists
of five distinct steps.

After identifying the atoms involved in the tautomeric
process (atoms 8, 9, and10 of molecule 1), the pKa for the
deprotonation of the sp3 atom (atom 10) is calculated using
SPARC’s pKa calculator. This pKa gives us the free energy
to deprotonate the molecule.

In the next step the ionized molecule will be transferred
to vacuum. The energy required to complete this step is
calculated using SPARC’s Henry’s constant calculator.

Once the ionized molecule is moved into space, it can be
rearranged to the ionized form of the other tautomer with a
synchronized switching of the double bond and the lone pair.
Both the structures are resonance structures of the same ion.
The energy cost for this rearrangement is zero.

Next the rearranged molecule is transferred back into
solution. The energy required for this transfer is calculated
using the Henry’s constant model.

Finally the rearranged molecule is now protonated and the
energy is calculated by determining the pKa of the sp3 atom
(atom 8 of molecule 2).

Using this approach SPARC can also calculate the
equilibrium constant of all types of tautomers. SPARC can
calculate pKa in various solvents and makes it possible for
the tautomer model to calculate the pKT in various solvents,

The model is illustrated in Figure 1, where the tautomeric
equilibrium is calculated for 2-amino-3-methyl-1H-indole.

Limitations and Workarounds. In the process of model-
ing tautomer equilibrium constants using experimentally
observed data, it was realized that the solvation energy

difference between the two ionic forms is negligible and is
within the noise range of the system. So, under normal
operation circumstances the differential Henry’s energy term
would be ignored.

The SPARC tautomer model relies on the pKa model to
perform the necessary ionization calculations. Most of the
ionization pKa calculations performed for the tautomer model
are of the type carbon acid, nitrogen acid, and hydroxy acid
ionizations. The perturbation effects in the case of carbon
acid and nitrogen acid pKa values are very large. This large
perturbation effect leads to a large error of estimation for
these calculations, which in turn reflects on the error of
estimation for the tautomer equilibrium calculation. The other

Table 1. Example Calculations and Mechanisms

SMILES refa statb resc fieldd MFe sigmaf HBg solvh calcdi obsdj

CO 14.3 0 0 0 0 1.2 0 0 15.5 15.1-15.5
Oc1ccccc1 14.3 0 -4.3 0 0 0 0 0 10.0 9.9-10.0
Oc1ccc(N(d)dO)cc1 14.3 0 -5.95 -1.09 -0.52 0 0 0 6.74 6.9-7.1
Oc1ccc(N(d)dO)ccc1 14.3 0 -4.3 -1.42 -0.21 0 0 0 8.38 8.2-8.4
Oc1c(N(d)dO)cccc1 14.3 0 -5.61 -2.67 -0.04 0 1.09 0 7.06 7.2
CN 9.83 -0.48 0 0 0 1.06 0 0 10.42 10.6
CNc1ccccc1 9.83 -0.3 -4.35 0 0 1.01 0 -1.08 5.11 4.8
Nc1ccc(N(d)dO)cc1 9.83 -0.48 -6.41 -1.46 -0.72 0 0 0 0.76 1.0
Nc1ccc(N(d)dO)ccc1 9.83 -0.48 -4.45 -1.91 -0.27 0 0 0 2.72 2.5-2.6
Nc1c(N(d)dO)cccc1 9.83 -0.48 -6.04 -3.58 -0.06 0 -0.14 0 -0.47 -0.3
n1ccccc1 2.36 0 2.59 0 0 0 0 0 4.96 5.2
n1ccc(N)cc1 2.36 0 5.20 -0.40 1.76 0 0 0 8.91 9.1
n1ccc(N)ccc1 2.36 0 2.59 -0.59 1.29 0 0 0 5.65 6.0
n1c(N)cccc1 2.36 0 5.20 -1.18 0.32 0 0.02 0 6.72 6.7-6.8

a pKa of reaction center. b Statistical factor. c Resonance effect. d Direct field effect. e Mesomeric field effect. f Sigma induction effect.
g Intramolecular hydrogen-bonding effect. h Solvation effect. i Calculated pKa. j Experimentally observed pKa.

Figure 1. SPARC thermodynamic loop to calculate the
tautomeric equilibrium constant.
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reason for the poorer performance of the carbon acid model
is the scarce availability of well-measured carbon ionization
constants. In order to keep the estimation error low during
the tautomeric network calculations, we devised a reliability
assignment to all tautomer calculations. These reliabilities
are the product of the reliability score of the two pKa

calculations involved. In this system all carbon acid pKa

calculations are assigned a score of 0.5 and other pKa

calculations are assigned a score of 1. The reliability scores
calculated are used to eliminate less reliable calculations
when averaging theKTs for a node.

A list of SPARC calculated tautomeric equilibrium
constants and the observed values29 are listed in Table 2. A

plot of the observed and calculated pKT values is shown in
Figure 2. Based on the very small number of published
experimental investigations of the tautomeric properties of
chemicals, ther2 value for the plot at 0.895 is not bad. The
effect of other processes involving the compounds of interest
brings about a large margin of error in the observed data
available in the literature. When such coupled processes are
involved, simple experiments fail to measure these equilib-
rium constants accurately.

(29) Toullec, J. InKeto-enol equilibrium constants: The Chemistry
of Enols; Rappoport, Z., Ed.; John Wiley and Sons Ltd.: New
York, 1990.

(30) The Merck Index, 13th ed.; Merck & Co., Inc.: Whitehouse
Station, NJ, 2001.

(31) Avdeef, A. Absorption and Drug DeVelopment: Solubility,
Permeability, and Charge State; John Wiley & Sons: Hoboken,
NJ, 2003.

(32) Box, K.; Bevan, C.; Comer, J.; Hill, A.; Allen, R.; Reynolds, D.
High Throughput Measurement of pKa Values in a mixed-buffer
linear pH gradient system.Anal. Chem.2003, 75, 883-892.

(33) Seiler, P. The simultaneous determinationof partition coefficient
and acidity constant of a substance.Eur. J. Med.Chem. 1974, 9
(6), 663-665.

(34) McFarland, J. W.; Berger, C. M.; Froshauer, S. A.; Hayashi, S.
F.; Hecker, S. J.; Jaynes, B. H.; Jefson, M. R.; Kamicker, B. J.;
Lipinski, C. A.; Lundy, K. M.; Reese, C. P.; Vu, C. B. Quantitative
structure-activity relationships among macrolide antibacterial
agents: in vitro and in vivo potency againstPasteurella miltocida.
J. Med. Chem.1997, 9, 1340-1346.

(35) Reichard, R. E.; Fernelius, W. C. Formation constants of 6-methyl-
2-picolylmethylamine with some common metal ions.J. Phys.
Chem. 1961, 65, 380-381.

(36) Ishihama, Y.; Nakamura, M.; Miwa, T.; Kajima, T.; Asakawa,
N. A Rapid Method for pKa Determination of Drugs Using
Pressure-Assisted Capillary Electrophoresis with Photodiode Array
Detection in Drug Discovery.J. Pharm. Sci.2002, 91, 933-942.

(37) Hong, D. D. Chloroquine phosphate.Anal. Profiles Drug Subst.
1976, 5, 61-85.

(38) Tariq, M.; Al-Badr, A. A. Chloroquine.Anal. Profiles Drug Subst.
1984, 13, 95-125.

(39) Szakacs, Z.; Beni, S.; Varga, Z.; Orfi, L.; Keri, G.; Noszal, B.
Acid-base profiling of imatinib (Gleevec) and its fragments.J.
Med. Chem. 2005, 48, 249-255.

(40) Miller, J. M.; Blackburn, A. C.; Shi, Y.; Melzak, A. J.; Ando, H.
Y. Semi-empirical relationships between effective mobility,
charge, and molecular weight of pharmaceuticals by pressure-
assisted capillary electrophoresis: Applications in drug discovery.
Electrophoresis2002, 23, 2833-2841.

(41) Takacs-Novak, K.; Noszal, B.; Hermecz, I.; Kereszturi, G.;
Podanyi, B.; Szasz, G. Protonation equilibria of quinolone
antibacterials.J. Pharm. Sci.1990, 79 (11), 1023-1028.

(42) Ross, D. L.; Elkinton, S. K.; Riley, C. M. Physicochemical
properties of the fluoroquinolone antimicrobials. III. 1-Octanol/
water partition coefficients and their relationships to structure.
Int. J. Pharm.1992, 88 (1-3), 379-839.

(43) Kristl, A.; Vrečer, F. Preformulation investigation of the novel
proton pump inhibitor lansoprazole.Drug DeV. Ind. Pharm. 2000,
26 (7), 781-783.

(44) Ruiz, R.; Rafols, C.; Roses, M.; Bosch, E. A potentially simpler
approach to measure aqueous pKa of insoluble basic drugs
containing amino groups.J. Pharm. Sci.2003, 92, 14731481.

(45) Wan, H.; Holmen, A. G.; Wang, Y.; Lindberg, W.; Englund, M.;
Nagard, M. B.; Thompson, R. A. High-Throughput screening of
pKa values of pharmaceuticals by pressure-assisted capillary
electrophoresis and mass spectrometry.Rapid Commun. Mass
Spectrom.2003, 17, 2639-2648.

(46) Altomare, C.; Cellamare, S.; Summo, L.; Fossa, P.; Mosti, L.;
Carotti, A. Ionization behaviour and tautomerism-dependent
lipophilicity of pyridine-2(1H)-one cardiotonic agents.Bioorg.
Med. Chem.2000, 8, 909-916.

(47) Kaufman, J. J.; Semo, N. M.; Koski, W. S. Microelectrometric
titration measurement of the pKa’s and partition and drug
distribution coefficients of narcotics and narcotic antagonists and
their pH and temperature dependence.J. Med. Chem. 1975, 18,
647-655.

(48) Ungell, A.-L.; Nylander, S.; Bergstrand, S.; Sjo¨berg, Å.; Lenner-
näs, H. Membrane transport of drugs in different regions of the
intestinal tract of the rat. J. Pharm. Sci. 1998, 87 (3), 360-366.

(49) Mannhold, R.; Dross, K. P.; Rekker, R. F.Quant. Struct.-Act.
Relat. 1990, 9, 21-28.

(50) Irvin, J. L.; Irvin, E. M. Apparent ionization exponents of
homologs of quinacrine; electrostatic effects.J. Am. Chem. Soc.
1950, 72, 2743-2749.

Table 2. A List of Observed and SPARC Calculated
Tautomeric Equilibrium Constants (pKT)

reactant product obsd29 calcd

CCdO CdCO 4.66 3.57

CCCdO CCdCO 3.9 2.74

CCCCdO CCCdCO 5.2 3.10

CC(C)CdO CC(C)dCO 2.8 2.86

CC(d)C CdC(O)C 8.22 8.27

CCC(d)CC CCdC(O)CC 7.44 7.32

CC(C)C(d)C(C)C CC(C)dC(O)C(C)C 7.52 7.39

CC(d)CC CdC(O)CC 8.76 8.28

CC(d)CC CC(O)dCC 7.51 7.32

CC(d)C(C)C CdC(O)C(C)C 8.61 8.28

CC(d)C(C)C CC(O)dC(C)C 7.33 7.39

CC(d)C(C)(C)C CdC(O)C(C)(C)C 8.76 8.28

c1ccc(OC)ccc1C(d)C c1ccc(OC)ccc1C(O)dC 7.31 6.77

c1ccc(C)ccc1C(d)C c1ccc(C)ccc1C(O)dC 6.95 6.74

c1ccccc1C(d)C c1ccccc1C(O)dC 6.63 6.84

c1ccc(Cl)ccc1C(d)C c1ccc(Cl)ccc1C(O)dC 7.77 7.01

c1ccc(Cl)cc1C(d)C c1ccc(Cl)cc1C(O)dC 7.57 7.01

c1ccc(C(F)(F)F)cc1C(d)C c1ccc(C(F)(F)F)cc1C(O)dC 7.55 7.24

c1ccc(N(d)dO)cc1C(d)C c1ccc(N(d)dO)cc1C(O)dC 7.13 7.23

c1ccc(N(d)dO)ccc1C(d)C c1ccc(N(d)dO)ccc1C(O)dC 6.95 7.32

c1(C)cc(C)cc(C)c1C(d)C c1(C)cc(C)cc(C)c1C(O)dC 6.92 6.66

c1ccccc1C(d)C(C)C c1ccccc1C(O)dC(C)C 6.48 6.14
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Building Tautomer Networks. The SPARC tautomer
model is used recursively to determine all possible tautomers
from an initial tautomeric form. This enables us to find
tautomers of tautomers, thereby creating a tautomer network
map with the different tautomer forms forming nodes, and
the equilibrium constants between these nodes are computed.
A doubly recursive algorithm is used to find the tautomers
and calculate their cumulative equilibrium constant. The
progression down the network is of the depth first search
type. This algorithm enables SPARC to identify all tautomer
forms and their equilibrium constants irrespective of the
initial tautomeric form.

In the process of developing tautomer networks a large
number of unproductive pathways are encountered. Unpro-
ductive pathways are defined as a particular speciation
pathway where the cumulativeK product for a species/isomer
is very small, leading to no viable progression of the path.
These unproductive pathways also consume a large amount
of calculation cycles. In order to identify and remove these
unproductive paths, we designed a filter to examine the
results after every cycle of calculation. This filter will check

combinedK for each species in the network. This filter stops
the progression of any of the paths if the terminal species is
found to have a combinedK lower than a set threshold. This
threshold is set at 0.0002 for the tautomer network model.

The reliability calculated for each tautomer equilibrium
constant is used to determine the reliability of each pathway
leading to a node in a tautomer network map. This reliability
of paths is used to decide whether that particular path’sK is
included in the averaging ofK’s for a node. The path is
ignored if the cumulative reliability of that path is less than
0.15. A sample calculation of the tautomer network for
acetylacetone is shown in Figure 3.

Integration of Hydration and Tautomerization. The
hydration model is used to generate all the hydrated forms
of the starting molecule and determine their hydration
constants. These molecules and their respective equilibrium
constants are combined and fed into the tautomer network
model to determine the possible tautomer and their integrated
constants.

Let us use the model to determine the reaction pathways
of 2-oxocyclohexanecarbaldehyde. To illustrate the effect of
coupling hydration to tautomerization, two different calcula-
tions, one without hydration and one with hydration, are
reported. Table 3 lists the output of the model without
hydration. Table 4 lists the output of the model with
hydration turned on. Both calculations are performed in
water.

From the results, the conjugated enol-keto forms are
found to be the most stable tautomeric forms in water. This
is justified as the double bond conjugation stabilizes the
molecules better than the dicarbonyl form.

Compared to the results without hydration we see more
species present in significant quantities. The relative stabili-
ties of two hydrated forms 8 and 9 are explained by the ease

Figure 2. SPARC tautomer model performance. Plot of
observed vs SPARC calculated tautomeric equilibrium values.

Figure 3. SPARC generated tautomer map for acetyl acetone. The equilibrium constants are indicated next to the arrows with
the reliability of the calculation.
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of hydration of the aldehyde versus that of the ketone. These
species are present in significant quantities to affect chemical
behavior.

Integration of Speciation, Hydration, and Tautomer
Network. Using the hydration coupled tautomer network
model the equilibrium constants for the neutral species have
been developed. The next step was to determine all the
different ionization processes as applied to these molecules
and determine their pKa values.

A full speciation calculation is performed for every species
from the tautomer network model. The respective equilibrium
constants of the tautomer forms were used to determine the
final species fraction as a function of pH. The molecular
speciation model is the same model used for pKa speciation;
hence it provides a wealth of information to the user. It
calculates the macro constant and micro constants for all
chemical processes and determines species fraction as a
function of pH.

Let us analyze the results of the fully integrated chemical
process model using the same compound. The plot of the
species fraction as a function of pH is shown in Figure 4.
From the plot we see that below pH 9 the dominant species
are the exo-enol form (species 3) and the dihydro form
(species 2) with a little bit of the other dihydro form (species
1). At about pH 9 these three species disappear and the
ionized form of the dicarbonyl form and the two keto-enol
forms dominate (species 6, 7, 8). The species number is the
order in which they are listed in the figure.

As the pH increases, the concentration of the dihydro form

is reduced, and the force that drives this reduction is the
ionization of the tautomer of the unhydrated form, which in
turn drives equilibrium of hydration in favor of the reactant,
thus decreasing the concentration of the hydrated forms. This
compound is a very good test for coupled reaction models

Table 3. Results of Integrated Tautomer Network Model
without Hydration

Table 4. Results of the Integrated Tautomer Network
Model with Hydration
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and is performing very well. A total of 59 micro constants
and one macro constant were determined by the speciation
calculator.

Estimating Prediction Error. For every predicted value
calculated from the computational programs, it will be very
useful to provide the users the level of confidence in the
prediction. We tried to address this issue for the SPARC
program as follows. The SPARC system is based on
perturbation models where resonance, field, mesomeric field,
sigma induction, differential solvation, and intramolecular
hydrogen-bonding effects all perturb the base pKa of an
unperturbed reaction center. For example, all sp3 N base
reactions represent the perturbation of the pKa of ammonia
(corrected for statistical factor). There are cases where the

perturbations are very large in one direction and the pKa is
very different from the unperturbed pKa. There are other
cases where the perturbations are very large but have opposite
signs that cancel or cases that have very small perturbations
that result in a pKa close to the unperturbed pKa of ammonia.
Since the error in prediction will be related to the magnitude
of each perturbation, we need to know the sum of the
absolute values of all these perturbations. SPARC error
estimation was carried out as follows. A set of well-measured
IUPAC pKa values was constructed for each reaction center
type addressed. These centers are OH (acid), SH (acid), sp3

N (acid and base), sp2 N (base), C (acid), and oxy-acids
(CO2H, PO2H, SO3H, ...). Each set was run and the rms error
was calculated. For each batch set, the absolute sum of
perturbations was found and averaged. An “error•multiplier”
for each type of reaction center was determined as rms(set)/
average(absolute sum). The estimated error for an individual
micro constant is calculated as error•multiplier(site•type)-
*absolute sum of the perturbations. The predicted errors and
observed errors were very well correlated. For macro pKa

values where several species on the left-hand side of the
reaction may couple to several species on the right-hand side
of the reaction, the errors for each of the micro constants
involved were weighted by their relative abundance in the
reaction and summed.

Datasets.For this report, we assembled a set of 123
organic compounds with experimentally measured pKa

values, either Pfizer internal measurements or in the literature.
Many of these compounds are known drugs and have been
studied previously by various groups using different methods,
experimentally as well as computationally. We also applied
SPARC to predict the pKa values for a set of 537 compounds
with 735 pKa values from the Pfizer internal dataset.

To explore the chemistry space for the compounds in the
dataset we used, a set of properties were calculated using

Figure 4. SPARC speciation plot. Plot of species fraction as
a function of pH for 2-oxocyclohexanecarbaldehyde.

Figure 5. The spider plot for computed properties for the dataset: molecular weight (MW), log D, polar surface area (PSA),
number of hydrogen bond acceptors (H Bond Acc), number of hydrogen bond donors (H Bond Don), number of rings (# Rings),
number of aromatic rings (# Arm Rings), and number of rotatable bonds (# Rot Bonds). In the plot, the blue region represents
the range of property, the black line inside the red region is the average value for each property, and the red region is the
standard deviation. (a) For a set of 123 known drugs. (b) For a set of 537 Pfizer compounds.
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Table 5. Comparison of SPARC pKa Predictions to Experimental Values

pKa pKa

no.
compound

name expt SPARC
resid-

ual

predic-
tion
error no.

compound
name expt SPARC

resid-
ual

predic-
tion
error

1 1-naphthol 9.38a 9.38 0.00 0.28 52 erythromycylamine 8.96h 6.72 2.24 0.31
2 2,4,6-trimethylpyridine 6.66a 7.24 0.58 0.22 9.95h 7.95 2.00 0.09
3 2,4,6-trichlorophenol 6.07a 6.11 0.04 0.42 53 etoposide 9.96d 8.79 1.17 0.33
4 2-aminopyridine 6.63a 6.54 0.09 0.33 54 famotidine 6.74,c 6.81d 6.06 0.59 0.20
5 2-bromoaniline 2.33a 2.68 0.35 0.33 8.74 0.41
6 2-ethylaniline 4.26a 4.43 0.17 0.25 11.19,c 11.24d 11.36 0.12 0.18
7 3-aminonaphtoic acid 2.82a 2.95 0.13 0.25 55 fenoterol 8.23g 8.28 0.05 0.29

4.61a 4.40 0.21 0.19 10.23g 9.47 0.76 0.13
8 3-chlorophenol 8.88a 9.09 0.21 0.26 11.45g 10.68 0.07 0.12
9 3-ethylaniline 4.70a 4.95 0.25 0.24 12.08 0.27
10 3-nitrophenol 8.33a 8.25 0.08 0.30 56 flumequine 6.27,c 6.36d 6.66 0.30 0.78
11 4-aminopyridine 9.28a 8.69 0.59 0.35 57 flurbiprofen 3.94d 4.20 0.26 0.26
12 4-bromoaniline 3.80a 3.92 0.12 0.28 58 furosemide 3.52,c 3.59d 2.55 1.04 0.72
13 4-chloroaniline 3.88a 3.94 0.06 0.28 10.63,c 10.43d 10.02 0.41 0.99
14 4-chlorophenol 9.15a 9.35 0.20 0.25 59 homidium 2.47g 1.72 0.75 0.43
15 4-nitrophenol 7.10a 6.75 0.35 0.38 60 hydrochlorothiazide 8.78d 7.69 1.09 1.33
16 abacavir 5.01b 4.48 0.53 0.82 10.16d 10.29 0.13 1.29
17 acetaminophen 9.63,c 9.55d 9.60 0.05 0.28 61 ibuprofen 4.45,c 4.27d 4.46 0.19 0.22
18 acetylsalicylic acid 3.50c 3.64 0.14 0.31 62 imatinib 1.71n 2.01 0.30 0.12
19 acyclovir 2.34,c 2.22d 1.35 0.87 0.52 3.10n 3.28 0.21 0.11

9.23,c 9.26d 8.62 0.64 0.72 3.88n

20 albendazole 3.28c 4.75 1.47 1.23 7.70n 8.28 0.58 0.17
9.93c 9.74 0.19 0.58 63 imipramine 9.51c 9.86 0.35 0.43

21 allopurinol 9.42d 9.34 0.08 0.34 64 indomethacin 4.42c 4.51 0.09 0.26
22 amifloxacin 5.42e 5.93 0.51 0.32 65 isoniazid 3.35d 3.98 0.63 0.49

7.39f 8.26 0.87 0.52 10.57d 10.63 0.06 0.79
23 amiloride 2.50 0.79 66 ketoconazole 3.15,o 3.12d 1.64 1.48 0.62

8.70g 8.00 0.70 0.51 6.41,o 6.45,d 5.89a 4.51 1.38 0.56
24 amiodarone 9.06c 8.60 0.46 0.38 67 labetalol 7.48c 8.00 0.52 0.25
25 amitriptyline 9.49c 9.55 0.06 0.31 9.42c 10.03 0.61 0.31
26 aniline 4.53a 4.72 0.19 0.23 68 lansoprazole 1.33p

27 antazoline 4.41d 2.21 2.20 0.63 4.15,p 4.11a 4.61 0.50 0.36
10.29d 10.51 0.22 0.52 8.84,p 9.29a 10.50 1.21 1.70

28 atenolol 9.54,c 9.56d 9.41 0.15 0.35 69 lidocaine 7.95,c 7.84d 8.38 0.54 0.60
29 atorvastatin 4.50d 3.91 0.59 0.23 70 liothyronine 1.88d 1.82 0.06 0.54
30 azithromycin 8.74h 6.15 2.59 0.37 8.13a 7.19 0.94 0.26

9.45h 7.41 2.04 0.12 10.55,d 9.16a 8.85 0.31 0.26
31 benzoic acid 4.19a 3.98 0.21 0.05 71 l-tyrosine 2.20c 2.21 0.01 0.46
32 betahistine 4.34i 3.72 0.62 0.26 9.06c 9.12 0.06 0.17

9.96j 9.86 0.10 0.19 10.12c 10.59 0.47 0.18
33 cefadroxil 2.64d 3.15 0.51 0.52 72 maprotiline 10.20q 10.57 0.37 0.16

7.17d 6.86 0.31 0.24 73 mebendazole 3.43r 4.41 0.98 1.22
9.74d 9.53 0.21 0.22 9.93r 9.17 0.76 0.59

34 cefazoline 2.20g 3.55 1.35 0.67 74 methotrexate 3.31c 3.17 0.14 0.09
12.05g 11.80 0.25 0.90 4.00c 3.96 0.04 0.11

35 chloroquine 8.25k 6.68 1.57 0.34 5.39c 4.74 0.65 0.19
10.37l 9.42 0.95 0.43 75 metoprolol 9.56,c 9.55d 9.47 0.08 0.27

36 chlorthalidone 9.11g 8.81 0.30 1.27 76 mexiletine 9.14c 9.38 0.24 0.13
10.98g 10.31 0.67 1.23 77 miconazole 6.58,c,d 5.52a 4.76 0.76 0.50

37 chlorzoxazone 8.24d 8.99 0.75 0.51 78 milrinone 5.10s 4.20 0.90 0.31
38 cimetidine 6.93,c 6.96d 5.50 1.46 0.46 9.30s 8.40 0.90 0.38
39 cinnamic acid 4.37a 4.05 0.32 0.06 79 morphine 8.18c 8.84 0.66 0.33
40 clarithromycin 8.99h 7.20 1.79 0.33 9.26c 10.29 1.03 0.30
41 clomipramine 9.38m 9.71 0.33 0.31 80 moxonidine 7.54,g 7.50a 7.91 0.41 1.09
42 clozapine 4.40c 5.44 1.04 0.77 81 nadolol 9.69c,d 9.25 0.44 0.28

7.90c 7.58 0.32 0.64 82 nalidixic acid 2.29 0.59
43 codeine 8.22c 9.00 0.78 0.33 6.01,c 6.19a 6.51 0.32 0.66
44 deprenyl 7.48c 9.48 2.00 0.31 83 naloxone 7.94t 7.22 0.72 0.39
45 desipramine 10.16c 10.34 0.18 0.35 9.44t 9.89 0.45 0.33
46 dichlorphenamide 8.41d 8.16 0.25 1.38 84 nicotine 2.95a 3.28 0.33 0.33

10.27d 9.64 0.63 1.33 8.20a 7.78 0.42 0.32
47 diclofenac 4.04d 4.05 0.01 0.30 85 nifedipine 2.20d 1.00 1.20 0.61
48 diltiazem 7.94d 8.13 0.19 0.38 86 nitrazepam 3.02c 3.31 0.29 0.73
49 diphenhydramine 9.10c 9.02 0.08 0.35 10.37c 9.63 0.74 0.87
50 enrofloxacin 6.04g 6.40 0.36 0.68 87 norfloxacin 6.23,c 6.31d 6.41 0.10 0.65

7.83g 8.15 0.32 0.53 8.51,c 8.59d 8.90 0.31 0.44
51 erythromycin 8.88h 7.25 1.63 0.32 88 nortriptyline 10.13c 10.35 0.22 0.17
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the Pipeline Pilot program 5.1.0.100: molecular weight
(MW), log D, polar surface area (PSA), number of hydrogen
bond acceptors (H Bond Acc), number of hydrogen bond
donors (H Bond Don), number of rings (# Rings), number
of aromatic rings (# Arm Rings), and the number of rotatable
bonds (# Rot Bonds). The spider plots for the calculated
properties are shown in Figure 5. In the plot, the blue region
represents the range of each property, the black line inside
the red region is the average value for each property, and
the red region is the standard deviation from the average
value.

Results and Discussion
Comparison of Experimental and Calculated pKa

Values.The calculated pKa values from the SPARC program
are compared with experimentally measured pKa values for
a set of 123 compounds in Table 5. Experimental values are
from Pfizer internal measurements using protocols 1 and 2
described in the Experimental Section as well as well-
established literature values from many references. For
several compounds, multiple pKa values were observed
experimentally since they contain multiple ionizable groups.
In total, there are 187 pKa values from 123 compounds. The
experimentally measured pKa values range from 1.71 (ima-
tinib) to 12.05 (cefazoline). In the table, the residual values,
which are the absolute differences between the calculated
and experimental values, are presented, as well as the

calculated prediction error described in the Estimating
Prediction Error section. For each experimental value, we
referenced the source in the table.

For several compounds, there was excellent agreement
between internal measurements and the literature values,
which validated the accuracy of the experimental protocols
we employed. A detailed discussion on the internal measure-
ments will be published in the future, but in this paper, we
will focus on the comparison of the calculated values from
the SPARC program to experimental measurements. The
absolute difference between experimental value and SPARC
calculated value is calculated using the Pfizer internal
measurement if a literature value is also available and the
Pfizer measurement using protocol 1 if both internal values
are available. For compounds with two calculated values for
a single measurement, such as in 54 and 55, and two
measurements for a single calculated one, such as in 62, the
average value of the two was used to calculate the residual
value. The correlation between experimental and calculated
values is shown in Figure 6, with the correlation coefficient
r2 ) 0.92 and the root-mean-square error (RMSE) of 0.78
for 187 pKa values.

For most of the compounds, the calculated values are in
excellent agreement with experimental values, especially for
compounds containing a single ionizable group.

Some regular errors were also observed which warrant
further discussion. The greatest differences between experi-

Table 5 (Continued)

pKa pKa

no.
compound

name expt SPARC
resid-

ual

predic-
tion
error no.

compound
name expt SPARC

resid-
ual

predic-
tion
error

89 olsalazine 2.55g 2.37 0.18 0.39 107 sulfasalazine 2.65c 2.44 0.21 0.38
2.55g 3.01 0.46 0.19 7.95c 8.82 0.87 0.30

11.20g 11.67 0.07 0.27 10.51c 11.80 1.29 0.76
12.00g 108 sulpiride 9.00b 8.71 0.29 0.65

90 omeprazole 4.40u 5.22 0.82 0.64 10.19b 9.91 0.28 0.60
8.70u 9.96 1.26 0.78 109 tamoxifen 8.48,c 8.85d 8.98 0.13 0.36

91 papaverine 6.39c 6.62 0.23 0.30 110 terbutaline 8.67,c 8.7d 8.46 0.24 0.29
92 phenobarbital 7.22g 7.05 0.17 1.30 9.97,c 10.36d 10.16 0.20 0.16

11.68g 11.95 0.27 1.07 11.02c 11.60 0.58 0.25
93 phenytoin 8.19d 8.26 0.07 1.22 111 terfenadine 9.89d 9.13 0.76 0.33
94 pheylacetic acid 4.19a 4.41 0.22 0.24 112 tetracaine 2.39c 2.23 0.16 0.45
95 pindolol 9.54c 9.17 0.37 0.28 8.49c 8.77 0.28 0.39
96 piroxicam 2.33c 1.60 0.73 0.68 113 tetracycline 3.33g 4.36 1.03 0.11

5.07c 6.20 1.13 0.40 7.16g 8.55 1.39 0.08
97 prazosin 6.83d 7.30 0.47 0.90 9.43g 9.71 0.28 0.09
98 promazine 9.28v 9.59 0.31 0.32 114 theophylline 8.55,c 8.65,d 9.0a 10.00 1.00 0.73
99 propranolol 9.53c,d 9.48 0.05 0.26 115 tilmicosin 8.18h 6.47 1.71 0.38
100 pyridine 5.33a 4.97 0.36 0.11 9.56h 8.64 0.92 0.13
101 quinacrine 7.73w 8.21 0.48 0.55 116 tolbutamide 5.32d 5.26 0.06 1.40

10.18w 10.52 0.34 0.63 117 trazodone 6.69q 7.32 0.63 0.47
102 quinine 4.24,c 4.16d 3.79 0.37 0.43 118 trimethoprim 7.07c 6.33 0.74 0.71

8.55,c 8.49d 8.16 0.33 0.23 119 trimipramine 9.15q 9.80 0.65 0.43
103 ranitidine 2.10d 1.80 0.30 0.68 120 trovafloxacin 5.90c 5.96 0.06 0.43

8.62d 9.10 0.48 0.82 8.11c 7.45 0.66 0.50
104 salicylic acid 2.93a 3.04 0.11 0.30 121 verapamil 9.07,c 8.76d 8.77 0.01 0.35
105 serotonin 9.89g 9.75 0.14 0.21 122 vinblastine 5.70d 5.98 0.28 0.25

10.91g 11.32 0.41 0.17 7.84d 8.43 0.59 0.23
106 sotalol 8.28,c 8.25d 8.73 0.48 0.88 123 warfarin 4.82,c 5.01d 5.74 0.73 0.52

9.72,c 9.68d 10.25 0.57 0.68

a Protocol 2 (see Experimental Section). b Reference 30. c Reference 31. d Protocol 1 (see Experimental Section). e Reference 41. f Reference
42. g Reference 32. h Reference 34. i Reference 35. j Reference 36. k Reference 37. l Reference 38. m Reference 33. n Reference 39. o Reference
40. p Reference 43. q Reference 44. r Reference 45. s Reference 46. t Reference 47. u Reference 48. v Reference 49. w Reference 50.
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mental and calculated pKa values were observed for mol-
ecules 30, 40, 51, 52, and 115. From a modeling standpoint
the common feature of these molecules is their size. Looking
at the observed pKa for molecule 30 (Azithromycin) at 8.74
and 9.45, it appears that the large number of dipole fields
did not affect the pKa. In SPARC these dipoles produced a
perturbation which reduced the pKa. SPARC’s field effect
model assumes that the interaction of the dipole/monopole
with the reaction center goes through the molecule and uses
an effective dielectric constant of 2.4. In large molecules
this assumption would not work as many of the interactions
would probably go through solvent pockets and will have a
much larger dielectric constant. Currently we are working
to rectify this problem in SPARC’s electrostatic models.
Molecules 38, 66, 77 all have imidazole as part of the
structure, and it is actively involved in the ionization.
Looking at the experimental data the imidazole seems to have
a very low susceptibility to field effects from the other dipole
and monopoles in the molecule. This can again be a similar
problem as discussed above. Molecule 35 (chloroquine) has
an observed pKa value of 8.25 for the quinoline nitrogen.
SPARC returned a result of 6.68. We believe that this result
can have resulted from the fact that the SPARC steric model
forced the amine side chain to rotate further than it should
have, which would reduce the resonance effect of the tertiary
nitrogen at that position. This will be rectified in future
versions. Molecule 44 (deprenyl) has an observed pKa value
of 7.48, compared with the SPARC value of 9.48. While it
is unlikely that the beta-phenyl moiety exerts much influence
on the pKa of the tertiary nitrogen center, less is known about

the influences of the propargyl side chain. At this time, we
have no explanation for the difference in the two values.

Regarding the prediction error, it ranges from 0.05 to 1.7
for 185 pKa values. There is no strong, direct correlation
between the difference in experimental and calculated values
and the prediction error. However, if the whole dataset is
partitioned into two groups using the median value of 0.35,
the average value of the difference is 0.48 for a set of 92
pKa values with prediction error less than 0.35, while the
average value of the difference is 0.63 for a set of 93 pKa

values with prediction error larger than or equal to 0.35.
Overall, SPARC predicts pKa values of many known drugs

in excellent agreement with experimentally measured values.
We applied SPARC to predict pKa values for a Pfizer internal
dataset, a set of 537 compounds containing 720 experimen-
tally measured pKa values. A correlation coefficient ofr2 )
0.80 and an RMSE) 1.05 were obtained for 720 calculated
pKa values. As shown in Figures 5a and 5b, the chemistry
space for the Pfizer compound set was very similar to that
defined by the compounds presented in Table 5, with the
exception that the Pfizer compounds had on average slightly
more rotatable bonds and a greater proportion of aromatic
rings.

Conclusion
The method described herein has been demonstrated to

be a reliable predictor of pKa values for complex drug-like
molecules, with a few exceptions as noted. Because SPARC
requires only a 2D structure for input, it has been possible
to implement this program as part of the predicted properties
suite within the Pfizer database. This method offers insight
into the effect of structural modification on the ionization
state as part of analogue and series design, and along with
log Po/w prediction enables the calculation of logD values.
Future developments of this software will focus on address-
ing the overprediction of perturbing effects of large, complex
molecules and on the steric factors which can potentially
overwhelm important resonance contributions.

The web interface of the SPARC program is freely
available in http://sparc.chem.uga.edu. Batch calculations are
also provided for academic research by Carreira’s group.
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Figure 6. The correlation between experimental pKa values
and the prediction from SPARC. The correlation coefficient
r2 ) 0.92, and the root-mean-square error (RMSE) ) 0.78
for 180 pKa values.
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